If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4u^2)-28u=0
a = 4; b = -28; c = 0;
Δ = b2-4ac
Δ = -282-4·4·0
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-28}{2*4}=\frac{0}{8} =0 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+28}{2*4}=\frac{56}{8} =7 $
| 9m=24 | | 7g-2=5g–12 | | d2=9/25 | | 24=6x-11 | | Y=-3x2+6x-7 | | 6(-3x+8)=-78 | | -18=w/4 | | 6x+6x-(x^2-9x)-54=0 | | 3z÷8-1=-2 | | x-8=-3+2x | | 7(2+a)=28 | | -5(-x-10)=-35 | | 99999d(7d)=1 | | 7(y+3)+9=5(y-2)-3y | | 1.75/50=x/12 | | 4y2+44y+121=0 | | 4(2+3x)=152 | | 56756x÷45=467×5×5×67/76 | | 30x^2/2-30x/3x=18 | | (2z-5)(7+z)=0 | | -v/13=13 | | 3x-8=15890 | | 12=10w-6w | | Y=-3x^2-10x-2 | | 5x2+7x=x2+2 | | a^2+14a+84=0 | | 20y-16y=16 | | 20y-16y=16y | | 4^x-3=8^4-x | | 10+-3y=25 | | 6(2x-10)+3(-3x+2)=102 | | 3.2x-17.88=-1x+30 |